

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Applications of visual analytics
3 Basic tasks, data types Project #1 out
4 Data assimilation and preparation
5 Introduction to D3
6 Bias in visualization

7 Data reduction and dimension reduction
8 Visual perception Project #2(a) out
9 Visual cognition

10 Visual design and aesthetics
11 Cluster analysis: numerical data
12 Cluster analysis: categorical data Project #2(b) out

13 High-dimensional data visualization
14 Dimensionality reduction and embedding methods
15 Principles of interaction

16 Midterm #1

17 Visual analytics Final project proposal call out
18 The visual sense making process
19 Maps
20 Visualization of hierarchies Final project proposal due
21 Visualization of time-varying and time-series data
22 Foundations of scientific and medical visualization
23 Volume rendering Project 3 out
24 Scientific and medical visualization Final Project preliminary report due
25 Visual analytics system design and evaluation
26 Memorable visualization and embellishments
27 Infographics design
28 Midterm #2

Reduce the number of data items (samples):
 random sampling

 stratified sampling

Reduce the number of attributes (dimensions):
 dimension reduction by transformation

 dimension reduction by elimination

Usually do both

Utmost goal
 keep the gist of the data

 only throw away what is redundant or superfluous

 it’s a one way street – once it’s gone, it’s gone

Sampling

 random

 stratified

Data summarization

 binning (already discussed)

 clustering (see a future lecture)

 dimension reduction (see next lecture)

Because…

 need to reduce the data so they can be feasibly stored

 need to reduce the data so a mining algorithm can be feasibly run

What else could we do

 buy more storage

 buy more computers or faster ones

 develop more efficient algorithms (look beyond O-notation)

However, in practice, all of this is happening at the same time

 unfortunately, the growth of data and complexities is always faster

 and so, data reduction will always be important

Good candidates are redundant data

 how many cans of ravioli will you buy?

Keep a representative number of samples:

 pick one of each

 or maybe a few more depending on importance

You are faced with collections of many different data

 they are usually not nicely organized

like this:

 but more like this:

Are all of these items pants?

 need a measure of similarity

 it’s a distance measure in high-dimensional feature space

We did not consider color, texture, size, etc…
 this would have brought more differentiation (blue vs. tan pants)

 the more features, the better the differentiation

ornateness

length

Measuring similarity can be difficult

needs to be
accurately measured

quantize each person into a vector

each vector element is a feature measurement

compare the vectors in terms of similarity
similarity is also called a distance function

Pant:

<length, ornateness, color>

Food delivery customer:

<type-pizza, type-salad, type-drink>

Examples:

 pants: <long, plain, tan>, <short, ornate, blue>, …

 expressed in numbers: <30”, 1, 2>, <15”, 2, 5>

 food: <pepperoni, tossed, none>, <pepperoni, tossed, coke>, …

 expressed in numbers: <1, 1, 0>, <1, 1, 3>

Manhattan distance

Euclidian distance

Pearson’s Correlation = correlation similarity
mean across all

data values for

attribute x, y

e.g. the “average

looking” pair of

pants in terms of

attribute x, y

Correlation distance is invariant to addition of a constant

 subtracts out by construction

 green and blue curve have correlation of 1

 but cosine similarity is < 1

 correlated vectors just vary in

the same way

 cosine similarity is stricter

Both correlation and cosine

similarity are invariant to

multiplication with a constant

 invariant to scaling

 green = blue + 0.1

Distances can compare two attributes or two data items

 means and other stats are then measured correspondingly

 mean and std dev mileage and weight, resp. over all cars when

computing correlation of weight and mileage

 mean of all attribute values for each car when computing the

distance between two cars
weight mileage HP

What’s the Jaccard similarity of the two baskets A and B?

This process is called clustering

 and in contrast to a real store, we can make the computer do it

for us

Note:

 in data mining similarity and distance are the same thing

 so we will use these terms interchangeably

ornateness

length

Clustering =

grouping of

similar items

(as determined

by the distance

function)

A cluster is a group of objects that are similar

 and dissimilar from other groups of objects at the same time

We need an objective function to capture this mathematically

 the computer will evaluate this function within an algorithm

 one such function is the mean-squared error (MSE)

 and the objective is to minimize the MSE

It’s not that easy in practice

 there is only one global minimum

 but often there are many local minima

 need to find the global minimum

In this case

 n=12 (blue points)

 k=2 (red points, the computed centroids)

 distance metric used: Euclidian

 minimization seems to be achieved

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

1. Decide on a value for k

2. Initialize the k cluster centers (randomly, if necessary)

3. Decide the class memberships of the N objects by
assigning them to the nearest cluster center

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct

5. If none of the N objects changed membership in the last
iteration, exit. Otherwise goto 3

The last slide and the next 8 slides contain figures courtesy of Eamonn Keogh, UC Riverside

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 1
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 2
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 3
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means Clustering: Step 4
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

expression in condition 1

e
x
p

re
s
s
io

n
 i
n

 c
o

n
d

it
io

n
 2

K-means Clustering: Step 5
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2
k3

Strengths:
 relatively efficient: O(tkn), where n is # objects, k is #

clusters, and t is # iterations. Normally, k, t << n.

 simple to code

Weaknesses:
 need to specify k in advance which is often unknown

 find the best k by trying many different ones and
picking the one with the lowest error

 often terminates at a local optimum

 the global optimum may be found by trying many
times and using the best result

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

k=1, MSE=873.0 k=2, MSE=173.1 k=3, MSE=133.6

Is there a principled way we can know when to stop looking?

Yes…

 we can plot the objective function values for k equals 1 to 6…

 then check for a flattening of the curve

 the abrupt change at k = 2 is highly suggestive of two clusters

 this technique is known as “knee finding” or “elbow finding”

tangent at k=2

What is sampling?

 pick a representative subset of the data

 discard the remaining data

 pick as many you can afford to keep

 recall: once it’s gone, it’s gone

 be smart about it

Simplest: random sampling

 pick sample points at random

 will work if the points are distributed uniformly

 this is usually not the case

 outliers will likely be missed

 so the sample will not be representative

Pick the samples according to some knowledge of the data

distribution

 cluster the data (outliers will form clusters as well)

 these clusters are also called strata (hence, stratified sampling)

 the size of each cluster represents its percentage in the population

 guides the number of samples – bigger clusters get more samples

sampling rate ~ cluster size

Eliminate redundant attributes
 eliminate highly correlated attributes

‒ km vs. miles

‒ a + b + c = d can possibly eliminate ‘c’ (or ‘a’ or ‘b’)

Eliminate redundant data
 cluster the data with small ranges e

 only keep the cluster centroids

 store size of clusters along to keep importance

 question: how do we find a good e?

 answer: compute histogram of distances

 choose a reasonable threshold from the left

2 e

Probabilities

 k/i for the ith sample to go into the reservoir

 1/k · k/i = 1/i for the jth reservoir element to be replaced

 k/n for all elements in the reservoir after n has been reached

 can be shown via induction

A good algorithm to use for streaming data when n is growing

Used in the CURE high-dimensional clustering algorithm
 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering

algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998

Algorithm
 initialize the point set S to empty

 pick the point farthest from the
mean as the first point for S

 then iteratively pick points that are
furthest from the points in S collected so far

Complexity is O(m·n2)
 n is the total number of points, m is the number of desired points

 can find arbitrarily shaped clusters and preserve outliers, too

 need some good data structures to run efficiently: kd-tree, heap

Dimension Reduction

3D 2D

Are there attributes that “go together”?

Can you name a few?

Physical attributes

 color

 number of doors

 number of wheels

 retractable roof

 height

 length

 frames around side windows

Which attributes are useful to distinguish SUVs from convertibles?

 number of doors (4 vs. 2) --> numerical, two levels

 retractable roof (no vs. yes) --> categorical, two levels

 frames around side windows (yes vs. no) --> categorical, two levels

 height (higher vs. lower) --> numerical, many levels

Which attributes are not so useful?

 number of wheels (constant 4) --> no discriminative power

 length (short and long SUVs, convertibles) --> confounding

 color (colors are seemingly random, or are they?)

Is color useful?

 the convertibles seem to have more vibrant colors (red, yellow, …)

 so maybe we made a discovery

Need to consider more than two attributes
 height attribute would have distinguished the Range Rover from

the convertibles and caused it to be an outlier

retractable

roof

frames around

side windows

a new type of SUV

New classes are constantly evolving over time

 this is known as cluster evolution

 measuring more features will increase the chance of discovery

retractable

roof

new class: the convertible SUV

height

why can empty

feature spaces

be interesting or

useful?

The more data (examples) the better

 increases the chances to discover the rare specimen

 but some attributes are useless

 we can cull them away

 perform attribute reduction or dimension reduction

Too many attributes can lead to obliteration of data patterns

PCA projections of the Image Segmentation dataset generated from
(a) the full 16D dataspace comprised of all feature dimensions

(b) the 3D Raw Color semantic subspace

(c) the 5D extended Raw Color semantic subspace.

The points are colored by their image class

Only (b) and (c) can separate the image classes well

By axis rotation
 determine a more efficient basis

 Principal Component Analysis (PCA)

 Singular value decomposition (SVD)

 Latent semantic analysis (LSA)

By type transformation
 determine a more efficient data type

 Fourier analysis and Wavelets for grids

 Multidimensional scaling (MSD) for graphs

 Locally Linear Embedding

 Isomap

 Self Organizing Maps (SOM)

 Linear Discriminant Analysis (LDA)

Covariance

 measures how much two random variables change together

For N variable we have N2 variable pairs

 we can write them in a matrix of size N2
 the covariance matrix

 for two variables X1 and X2

Covariance cov(X,Y)

Pearson’s correlation r

 is covariance normalized by the individual variances for X and Y

mean of all data item

values xi and yi for

attributes X and Y, resp.

1

2 2

1 1

()()

() ()

n

i i

i
xy

n n

i i

i i

x x y y

r

x x y x

individual variances

for attributes X and Y

Correlation rates between -1 and 1:

Important to note:

 correlation is defined for linear relationships

 visualization can help

 none of these point distributions have correlations:

Analytical:

Samples:

An n-D dataset has n variables x1, x2, … xn
 define pairwise covariance among all of these variables

 construct a covariance matrix

 a correlation matrix would just list the correlations instead

(,) [()()]x yCov X Y E X Y

1

cov ()()
n

xy xy i i

i

x x y y

just value distribution (scatterplot matrix)

Ultimate goal:

 find a coordinate system that can represent the variance in the

data with as few axes as possible

 rank these axes by the amount of variance (blue, red)

 drop the axes that have the least variance (red)

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st Principal

Component, y1

2nd Principal

Component, y2

Find the principal components (factors) of a distribution

First characterize the distribution by

 covariance matrix Cov

 correlation matrix Corr

 lets call it C

 perform QR factorization or LU decomposition on that matrix to get

 Q: matrix with Eigenvectors

 : diagonal matrix with Eigenvalues l

 now order the Eigenvectors in terms of their Eigenvalues l

1Q Q C

l1, l2 are the Eigenvalues

 encode the length (and therefore significance) of the Eigenvectors

4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1
λ2

When to use what?

 use covariance matrix when the variable scales are similar

 use correlation matrix when the variables are on different scales

 the correlation matrix standardizes the data

 in general they give different results, especially when the scales

are different

Before PCA

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8 10 12

Variable X1

V
a
ri

a
b

le
 X

2

PC 1

PC 2

After PCA

 l1 = 9.8783 l2 = 3.0308 Trace = 12.9091

 PC 1 displays (“explains”) 9.8783/12.9091 = 76.5% of total variance

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10 12

PC 1

P
C

 2

possible

threshold

(explain

75% of data

variance)

keep top 3 principal components reduce dimensions by a factor of 4/7 = 57%

Create a scree plot

 plots a histogram of the Eigenvalues ordered by magnitude

 plots the explained variance as a curve

Some familiar faces…

We can reconstruct each face as a linear combination of

“basis” faces, or Eigenfaces [M. Turk and A. Pentland (1991)]

+

Average Face

Eigenfaces

90% variance is

captured by the first

50 eigenvectors

Reconstruct existing

faces using only 50

basis images

We can also generate

new faces by

combining

eigenvectors with

different weights

V0

x ∑

A More Challenging Example
• Data from research on habitat definition
in the endangered Baw Baw frog

• 16 environmental and structural variables
measured at each of 124 sites

• Correlation matrix used because
variables have different units

Philoria frosti

Axis Eigenvalue
% of

Variance
Cumulative %
of Variance

1 5.855 36.60 36.60

2 3.420 21.38 57.97

3 1.122 7.01 64.98

4 1.116 6.97 71.95

5 0.982 6.14 78.09

6 0.725 4.53 82.62

7 0.563 3.52 86.14

8 0.529 3.31 89.45

9 0.476 2.98 92.42

10 0.375 2.35 94.77

Eigenvalues

How Many Axes Are Needed?
• Does the (k+1)th principal axis represent
more variance than would be expected
by chance?

• Several tests and rules have been
proposed

• A common “rule of thumb” when PCA is
based on correlations is that axes with
eigenvalues > 1 are worth interpreting

• In our example 4 Eigenvectors fit this
criterion (we shall keep 3 for simplicity)

Baw Baw Frog - PCA of 16 Habitat Variables

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6 7 8 9 10

PC Axis Number

E
ig

e
n

v
a
lu

e

Interpreting Eigenvectors

• Correlations
between variables
and the principal
axes are known as
loadings

• Each element of
the eigenvectors
represents the
contribution of a
given variable to a
component

• The loadings of
variables on the
first three PCs
are shown here

 PC 1 PC 2 PC 3

Altitude 0.3842 0.0659 -0.1177

pH -0.1159 0.1696 -0.5578

Cond -0.2729 -0.1200 0.3636

TempSurf 0.0538 -0.2800 0.2621

Relief -0.0765 0.3855 -0.1462

maxERht 0.0248 0.4879 0.2426

avERht 0.0599 0.4568 0.2497

%ER 0.0789 0.4223 0.2278

%VEG 0.3305 -0.2087 -0.0276

%LIT -0.3053 0.1226 0.1145

%LOG -0.3144 0.0402 -0.1067

%W -0.0886 -0.0654 -0.1171

H1Moss 0.1364 -0.1262 0.4761

DistSWH -0.3787 0.0101 0.0042

DistSW -0.3494 -0.1283 0.1166

DistMF 0.3899 0.0586 -0.0175

What’s a “Loading”?
• The amount of weight a data dimension

has on a principal component

– petal length/width have a high loading on PC1

– sepal width has a high loading on PC2

• Another observation

– projection into PC basis

can also bring out

clusters better

– since spread is

maximized

PC1

PC2

Significance of Variables

• We can compute the significance of the
variables as the sum of squared loadings on to the
most significant Eigenvectors we selected (3 in our
example)

• The next slide shows the table of the last slide
expanded with these squared loadings

• We can then sort the table by the squared
loadings and make a scree plot

• The most significant variables are those above
some chosen cutoff, for example 0.4 (marked in
yellow in the table)

Significance of Variables
 PC 1 PC 2 PC 3

sum of squared
loadings

Altitude 0.3842 0.0659 -0.1177 0.41

pH -0.1159 0.1696 -0.5578 0.59

Cond -0.2729 -0.1200 0.3636 0.47

TempSurf 0.0538 -0.2800 0.2621 0.39

Relief -0.0765 0.3855 -0.1462 0.42

maxERht 0.0248 0.4879 0.2426 0.55

avERht 0.0599 0.4568 0.2497 0.52

%ER 0.0789 0.4223 0.2278 0.49

%VEG 0.3305 -0.2087 -0.0276 0.39

%LIT -0.3053 0.1226 0.1145 0.35

%LOG -0.3144 0.0402 -0.1067 0.33

%W -0.0886 -0.0654 -0.1171 0.16

H1Moss 0.1364 -0.1262 0.4761 0.51

DistSWH -0.3787 0.0101 0.0042 0.38

DistSW -0.3494 -0.1283 0.1166 0.39

DistMF 0.3899 0.0586 -0.0175 0.39

Significance of Variables

• Scree plot

only eliminate

very weak

variables

more aggressive

reduction of variables
variables considered

significant

chosen

significance

threshold

Data reduction

 notions of similarity and distance in high-D data spaces

 clustering (k-means) and how to pick optimal k

 sampling

Dimension reduction

 important vs. irrelevant dimensions

 notion of principal components and Eigenvectors

 scree plots to visualize explained variance and threshold it

 principal component analysis (PCA)

 using PCA loadings to find most important data dimensions

